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Local Lipschitz Constants

ℓ∞ local Lipschitz constant for a neural network f, within a local region X :

L(f, X ) = sup
x1,x2∈X , x1 ̸=x2

∥f(x1) − f(x2)∥∞

∥x1 − x2∥∞
= sup

x∈X , J(x)∈∂f(x)
∥J(x)∥∞, where X = B∞(x0, ϵ).

Connected to many properties of neural networks, such as robustness, fairness, generalization, etc.
We aim to efficiently compute sound and tight upper bounds of L(f, X ).

Formulation with a Computational Graph

Ji(x) ∈ ∂f(x)
∂hi−1(x)

{
Ji+1(x)∆i(x)Wi : Ji+1(x) ∈ ∂f(x)

∂hi(x), ∆i(x) ∈ ∂σ(zi(x))
}

.

We formulate the computation for the Clarke Jacobian as a backward computational graph augmented to the
forward graph for the original neural network computation.
Benefits Our formulation enables:

Using linear bound propagation techniques that originally supports neural network verification on general
computational graphs to efficiently and tightly upper bound ∥J1(x)∥∞.
Utilizing recent and future progress in bound propagation-based verification (e.g., branch-and-bound), to
further enhance the computation for local Lipschitz constants.

Empirical improvements
Scalability and Efficiency: we support models with 4 convolutional layers on image datasets, compared to
only small and shallow MLPs in previous works.
Tightness: on relatively larger models, we obtain up to 20X tighter bounds compared to RecurJac.
An application for monotonicity analysis.
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Linear Bound Propagation

Principles
Given a specified perturbation on the input, linear bound propagation computes the output bounds of a
computational graph, by propagating the linear relationship between layers, with all the nonlinear
operators relaxed by linear relaxation.
A library for general computational graphs: auto_LiRPA (https://github.com/Verified-Intelligence/auto_LiRPA)

Proposed Linear Relaxation for Clarke Gradients

We propose a tight linear relaxation for [Ji+1(x)∆i(v)]j required in bounding ∥J(x)∥∞.

s[Ji+1(x)]j + t ≤ [Ji+1(x)]j · [∆i(x)]jj ≤ s[Ji+1(x)]j + t for [Ji+1(x)]j ∈
[
[Li+1]j, [Ui+1]j

]
, [∆i(x)]jj ∈ [0, 1].

The exact upper bound and lower bound is a ReLU and inverted ReLU respectively.
Thus we propose a closed-form linear relaxation implemented as relaxing ReLU.
This relaxation is the provably optimal linear relaxation and much tighter than the interval relaxation in
prior works (such as RecurJac).
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Experiments

Results on MNIST

Method 3-layer MLP CNN-2C2F
Value Runtime Value Runtime

NaiveUB 3,257.16 0.00 80,239.62 0.00
LipMIP 14,218.99* 120.51 - -
LipBaB 947.69 62.77 - -
RecurJac 1,091.31 0.22 12,514.55 115.43

Ours (w/o BaB) 688.15 4.95 5,473.03 8.21
Ours 397.25 52.23 5,458.84 60.04

Our method is more efficient than LipMIP and LipBaB,
while computing tighter results than RecurJac.
LipMIP (solving MIP) and LipBaB (interval bounds + BaB)
are costly and only feasible on small models; RecurJac (a
recursive algorithm with relaxation) computes looser bounds.

Results for CNNs on CIFAR and Tiny-ImageNet

CIFAR-2C2F CIFAR-4C2F TinyIN-2C2F TinyIN-4C2F
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(Results are in log scale.)
Up to 20X tighter bounds than RecurJac.
LipMIP and LipBaB cannot handle these larger models.
The original RecurJac is limited to MLP. Here we
re-implement RecurJac’s relaxation in our more general and
flexible framework to obtain the results for CNNs.
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