Efficiently Computing Local Lipschitz Constants of Neural Networks via Bound Propagation

Local Lipschitz Constants

- ℓ_{∞} local Lipschitz constant for a neural network f, within a local region \mathcal{X} : $L(f,\mathcal{X}) = \sup_{\mathbf{x}_1,\mathbf{x}_2\in\mathcal{X}, \ \mathbf{x}_1\neq\mathbf{x}_2} \frac{\|f(\mathbf{x}_1) - f(\mathbf{x}_2)\|_{\infty}}{\|\mathbf{x}_1 - \mathbf{x}_2\|_{\infty}} = \sup_{\mathbf{x}\in\mathcal{X}, \ \mathbf{J}(\mathbf{x})\in\partial f(\mathbf{x})} \|\mathbf{J}(\mathbf{x})\|_{\infty}, \quad \text{where } \mathcal{X} = B_{\infty}(\mathbf{x}_0,\epsilon).$
- Connected to many properties of neural networks, such as robustness, fairness, generalization, etc.
- We aim to efficiently compute sound and tight upper bounds of $L(f, \mathcal{X})$.

Formulation with a Computational Graph

$$\mathbf{J}_{i}(\mathbf{x}) \in rac{\partial f(\mathbf{x})}{\partial h_{i-1}(\mathbf{x})} \Big\{ \mathbf{J}_{i+1}(\mathbf{x}) \Delta_{i}(\mathbf{x}) \mathbf{W}_{i} : \mathbf{J}_{i+1}(\mathbf{x}) \in rac{\partial f(\mathbf{x})}{\partial h_{i}(\mathbf{x})}, \ \Delta_{i}(\mathbf{x}) \Big\}$$

We formulate the computation for the Clarke Jacobian as a *backward computational graph* augmented to the forward graph for the original neural network computation.

Benefits Our formulation enables:

- computational graphs to efficiently and tightly upper bound $\|\mathbf{J}_1(\mathbf{x})\|_{\infty}$.
- further enhance the computation for local Lipschitz constants.

Empirical improvements

- only small and shallow MLPs in previous works.
- An application for monotonicity analysis.

Backward graph (norm of Clarke Jacobian)

Zhouxing Shi¹, Yihan Wang¹, Huan Zhang², Zico Kolter^{2,3}, Cho-Jui Hsieh¹

¹University of California Los Angeles ²Carnegie Mellon University

 $(\mathbf{x}) \in \partial \sigma(z_i(\mathbf{x})) ig \}.$

Principles

- operators relaxed by **linear relaxation**.

Proposed Linear Relaxation for Clarke Gradients

• We propose a tight linear relaxation for $[\mathbf{J}_{i+1}(\mathbf{x})\Delta_i(\mathbf{v})]_i$ required in bounding $\|\mathbf{J}(\mathbf{x})\|_{\infty}$.

- The exact upper bound and lower bound is a ReLU and inverted ReLU respectively.
- Thus we propose a closed-form linear relaxation implemented as relaxing ReLU.
- This relaxation is the provably optimal linear relaxation and much tighter than the interval relaxation in prior works (such as RecurJac).

³Bosch Center for AI

Linear Bound Propagation

• Given a specified perturbation on the input, linear bound propagation computes the output bounds of a computational graph, by propagating the linear relationship between layers, with all the nonlinear

• A library for general computational graphs: auto_LiRPA (https://github.com/Verified-Intelligence/auto_LiRPA)

 $\underline{s}[\mathbf{J}_{i+1}(\mathbf{x})]_j + \underline{t} \leq [\mathbf{J}_{i+1}(\mathbf{x})]_j \cdot [\Delta_i(\mathbf{x})]_{jj} \leq \overline{s}[\mathbf{J}_{i+1}(\mathbf{x})]_j + \overline{t} \quad \text{for } [\mathbf{J}_{i+1}(\mathbf{x})]_j \in [[\mathbf{L}_{i+1}]_j, [\mathbf{U}_{i+1}]_j], [\Delta_i(\mathbf{x})]_{jj} \in [0, 1].$

Experiments

Results on MNIST

Method	3-layer MLP		CNN-2C2F	
	Value	Runtime	Value	Runtime
NaiveUB	3,257.16	0.00	80,239.62	0.00
LipMIP	14,218.99*	120.51	-	-
LipBaB	947.69	62.77	-	-
RecurJac	1,091.31	0.22	12,514.55	115.43
Ours (w/o BaB)	688.15	4.95	5,473.03	8.21
Ours	397.25	52.23	5,458.84	60.04

• Our method is more efficient than LipMIP and LipBaB, while computing tighter results than RecurJac. LipMIP (solving MIP) and LipBaB (interval bounds + BaB)

are costly and only feasible on small models; RecurJac (a recursive algorithm with relaxation) computes looser bounds.

Results for CNNs on CIFAR and Tiny-ImageNet

• Up to **20X tighter bounds** than RecurJac.

• LipMIP and LipBaB cannot handle these larger models.

The original RecurJac is limited to MLP. Here we re-implement RecurJac's relaxation in our more general and

flexible framework to obtain the results for CNNs.

Paper

Code

auto_LiRPA