
FORMAL VERIFICATION FOR NEURAL NETWORKS
WITH GENERAL NONLINEARITIES VIA BRANCH-AND-
BOUND

Zhouxing Shi*1, Qirui Jin*2, Zico Kolter3, Suman Jana4, Cho-Jui Hsieh1, Huan Zhang5

1University of California, Los Angeles 2University of Michigan
3Carnegie Mellon University 4Columbia University 5University of Illinois Urbana-Champaign
z.shi@ucla.edu, qiruijin@umich.edu
zkolter@cs.cmu.edu, suman@cs.columbia.edu, chohsieh@cs.ucla.edu, huan@huan-zhang.com
*Equal contribution

ABSTRACT

Bound propagation with branch-and-bound (BaB) is so far among the most effective
methods for neural network (NN) verification. However, existing works with BaB
have mostly focused on NNs with piecewise linear activations, especially ReLU
networks. In this paper, we develop a framework for conducting BaB based on
bound propagation with general branching points and an arbitrary number of
branches, as an important move for extending NN verification to models with
various nonlinearities beyond ReLU. Our framework strengthens verification for
common neural networks with element-wise activation functions, as well as other
multi-dimensional nonlinear operations such as multiplication. In addition, we
find that existing heuristics for choosing neurons to branch for ReLU networks are
insufficient for general nonlinearities, and we design a new heuristic named BBPS,
which usually outperforms the heuristic obtained by directly extending the existing
ones originally developed for ReLU networks. We empirically demonstrate the
effectiveness of our BaB framework on verifying a wide range of NNs, including
networks with Sigmoid, Tanh, sine or GeLU activations, LSTMs and ViTs, which
have various nonlinearities. Our framework also enables applications with models
beyond neural networks, such as models for AC Optimal Power Flow (ACOPF).

1 INTRODUCTION

Neural network (NN) verification aims to formally verify whether a neural network satisfies specific
properties, such as safety or robustness, prior to its deployment in safety-critical applications. Mathe-
matically, verifiers typically compute bounds on the output neurons within a pre-defined input region.
As computing exact bounds is NP-complete (Katz et al., 2017) even for simple ReLU networks, it
becomes crucial to relax the bound computation process to improve efficiency. Bound propagation
methods (Wang et al., 2018b; Wong & Kolter, 2018; Zhang et al., 2018; Dvijotham et al., 2018;
Henriksen & Lomuscio, 2020; Singh et al., 2019b) are commonly used, which relax nonlinearities in
neural networks into linear lower and upper bounds that can be efficiently propagated. Linear relax-
ation relies on intermediate layer bounds, which are recursively computed with bound propagation.
However, if intermediate bounds are not sufficiently tight, relaxation often results in loose output
bounds, particularly for deeper networks.

To further tighten the bounds for bound propagation, Branch-and-Bound (BaB) has been widely
utilized (Bunel et al., 2018; 2020; Xu et al., 2021; Lu & Mudigonda, 2020; De Palma et al., 2021;
Wang et al., 2021; Ferrari et al., 2021). BaB iteratively branches intermediate bounds so that the
original verification is branched into subdomains with tighter intermediate bounds. Subsequently,
these subdomains can be bounded individually with tighter linear relaxations. However, previous
works mostly focused on ReLU networks due to the simplicity of ReLU from its piecewise linear
nature. Branching a ReLU neuron only requires branching at 0, and it immediately becomes linear
in either branch around 0. Conversely, handling neural networks with nonlinearities beyond ReLU,
such as LSTMs (Hochreiter & Schmidhuber, 1997) and Transformers (Vaswani et al., 2017) which

1

also have nonlinearities beyond activation functions such as multiplication and division, introduces
additional complexity as the convenience of piecewise linearity diminishes. There have been previous
works consdering BaB for NNs beyond ReLU networks, e.g., Henriksen & Lomuscio (2020); Wu
et al. (2022) considered BaB on networks with S-shaped activations such as Sigmoid. However,
these works still often specialize in specific and relatively simple types of nonlinearities, and a more
principled framework for handling general nonlinearities is lacking, leaving ample room for further
advancements in verifying non-ReLU networks.

In this paper, we propose a principled verification framework with BaB for neural networks with
general nonlinearities. We generalize α,β-CROWN1 (Zhang et al., 2018; Xu et al., 2020; 2021;
Wang et al., 2021) which is based on linear bound propagation and BaB. While α,β-CROWN does
accept non-ReLU activations, their BaB is still restricted to ReLU. We resolve multiple challenges to
enable BaB for general nonlinearities beyond piecewise linear ReLU. We first formulate a general
BaB framework. This formulation encompasses general branching points (in contrast to simply 0 for
ReLU) and a general number of branches (in contrast to two branches for ReLU which naturally has
two pieces). We also formulate and encode general branching constraints in linear bound propagation
by optimizable Lagrange multipliers to tighten the bounds. Moreover, we find that a popular existing
branching heuristic named “BaBSR” for selecting ReLU neurons to branch (Bunel et al., 2020) is
suboptimal when directly extended to networks with general nonlinearities. It is because for their
convenience and efficiency, BaBSR discards an important term which is found to be negligible
on ReLU networks, yet we find it to be important on general nonlinearities. Thereby, to improve
the effectiveness of BaB, we introduce a new branching heuristic named “Branching via Bound
Propagation with Shortcuts (BBPS)” with a more accurate estimation by carefully leveraging the
linear bounds from bound propagation.

We demonstrate the effectiveness of the new framework on a variety of networks, including feed-
forward networks with Sigmoid, Tanh, sine, or GeLU activations, LSTMs, Vision Transformers
(ViTs). We also enable verification on models for the AC Optimal Power Flow (ACOPF) application,
which contains a general computational graph beyond a neural network. These models involve
various nonlinearities including S-shaped activations, periodic trigonometric functions, and also
multiplication and division which are multi-dimensional nonlinear operations beyond activation
functions. Our BaB is generally effective and outperforms the existing baselines.

2 BACKGROUND

The NN verification problem. Let f : Rd 7→ RK be a neural network taking input x ∈ Rd and
outputting f(x) ∈ RK . Suppose C is the input region to be verified, and s : RK 7→ R is an output
specification function, h : Rd 7→ R is the function that combines the NN and the output specification
as h(x) = s(f(x)). NN verification can typically be formulated as verifying if h(x) > 0,∀x ∈ C
provably holds. A commonly adopted special case is robustness verification given a small input
region, where f(x) is a K-way classifier and h(x) := mini 6=c{fc(x)− fi(x)} checks the worst-case
margin between the ground-truth class c and any other class i. The input region is often taken as
a small `∞-ball with radius ε around a data point x0, i.e., C := {x | ‖x − x0‖∞ ≤ ε}. This a
succinct and useful problem for provably verifying the robustness properties of a model and also
benchmarking NN verifiers, although there are other NN verification problems beyond robustness.
We also mainly focus on this setting for its simplicity following prior works.

Linear bound propagation. We develop our new framework based on α,β-CROWN (Xu et al.,
2020; 2021; Wang et al., 2021) that is among the state-of-the-art NN verifiers (Bak et al., 2021;
Müller et al., 2022a). α,β-CROWN is based on linear bound propagation (Zhang et al., 2018) which
can lower bound h(x) by propagating linear bounds w.r.t. the output of one or more intermediate
layers as

h(x) ≥
∑

i
Aix̂i + c, (1)

where x̂i (i ≤ n) is the output of intermediate layer i in the network with n layers, Ai are the
coefficients w.r.t. layer i, and c is a bias term. In the beginning, the linear bound is simply
h(x) ≥ I · h(x) + 0 which is actually an equality. In the bound propagation, Aix̂i in Eq. (1) is

1α,β-CROWN mentioned in this paper is the version released by March 2023 at https://github.com/
Verified-Intelligence/alpha-beta-CROWN.

2

https://github.com/Verified-Intelligence/alpha-beta-CROWN
https://github.com/Verified-Intelligence/alpha-beta-CROWN

recursively substituted by the linear bound of x̂i w.r.t its input. For simplicity, suppose layer i− 1 is
the input to layer i and x̂i = hi(x̂i−1), where hi(·) is the computation for layer i. And suppose we
have the linear bounds of x̂i w.r.t its input x̂i−1 as:

aix̂i−1 + bi ≤ x̂i = hi(x̂i−1) ≤ aix̂i−1 + bi, (2)

with parameters ai,bi,ai,bi for the linear bounds, and “≤” holds elementwise. Then Aix̂i can be
substituted and lower bounded by:

Aix̂i ≥ Ai−1x̂i−1 +
(
Ai,+bi +Ai,−bi

)
, where Ai−1 =

(
Ai,+ai +Ai,−ai

)
, (3)

where “+” and “-” in the subscripts denote taking positive and negative elements respectively, and in
this way the linear bounds are propagated from layer i to layer i− 1. Ultimately the linear bounds
can be propagated to the input of the network x as h(x) ≥ A0x+ c, A0 ∈ R1×d, where the input
can be viewed as the 0-th layer. Depending on C, this linear bound can be concretized into a lower
bound without x. If C is an `∞ ball, we have

∀‖x− x0‖∞ ≤ ε, A0x+ c ≥ A0x0 − ε‖A0‖1 + c. (4)

To construct Eq. (2), if hi(·) is inherently linear. Otherwise, linear relaxation is used, which relaxes
a nonlinearity and bound the nonlinearity by linear functions. An intermediate bound on x̂i−1 as
li−1 ≤ x̂i−1 ≤ ui−1 is usually required for the relaxation, which can be obtained by running
additional bound propagation and treating the intermediate layers as the output of a network. Linear
relaxation can contain optimizable parameters to tighten the bounds (Lyu et al., 2020; Xu et al., 2021).
And we use α to denote all the optimizable parameters in the linear relaxation.

Branch-and-Bound (BaB). BaB has been widely applied to tighten verification bounds. Each
time it branches the intermediate bound of a selected neuron j in a selected layer i − 1, x̂i−1,j ∈
[li−1,j ,ui−1,j], into smaller subdomains with tighter intermediate bounds. Then BaB bounds such
subdomain respectively and take the worst bound from the subdomains as the new bound. This
process is repeated iteratively to gradually improve the bounds. α,β-CROWN also adds branching
constraints derived from the new intermediate bounds after each branching, and the constraints are
utilized in bound propagation to tighten the bounds with Lagrangian multipliers. We use β to denote
all the Lagrangian multipliers. Note that BaB in α,β-CROWN is restricted to ReLU activation only.

3 METHOD

3.1 OVERALL FRAMEWORK

In this section, we describe the overall framework, which mostly follows α,β-CROWN (Zhang et al.,
2018; Xu et al., 2020; 2021; Wang et al., 2021). Compared to the original α,β-CROWN which only
supports ReLU neurons in the BaB, we will formulate a general branching framework for general
nonlinearities and also a new branching heuristic, in the remaining subsections of Section 3.

Notations. In Section 2, we only considered a feedforward NN for simplicity. But the linear bound
propagation technique has been generalized to general computational graphs to support various NN
architectures (Xu et al., 2020). In our method, we also consider a general computational graph h(x)
for input region x ∈ C. Instead of a feedforward network with n layers in Section 2, we consider a
computational graph with n nodes, where each node i computes some function hi(·) that may either
correspond to a linear layer in the NN or a nonlinearity. We use x̂i to denote the output of node i
which may contain many neurons, and we use x̂i,j to denote the output of the j-th neuron in node
i. Intermediate bounds of node i may be needed to relax and bound hi(·), and we use li,j ,ui,j to
denote the intermediate lower bound and upper bound respectively. We use l and u to denote all the
intermediate lower bounds and upper bounds respectively for the entire computational graph.

Initial verification. Before entering BaB, we first compute initial verified bounds by bound propaga-
tion with optimizable linear relaxation. Specifically, we use Vα(h, C,α) to denote the linear bound
propagation-based verifier with α denoting all the parameters in the optimizable relaxation, and we
compute initial verified bounds by optimizing α, as h(x) ≥ maxα Vα(h, C,α) (∀x ∈ C), where α
is constrained within a domain that ensures the soundness of the relaxation. All the intermediate
bounds are also updated with the updating α, and we obtain the optimized intermediate bounds l,u.

3

The verification finishes if Vα(h, C,α) > 0 holds already. Since α,β-CROWN has limited support
on nonlinearities beyond ReLU, we have derived new optimizable linear relaxation we encounter, as
discussed in Appendix B.

Branch-and-Bound. Otherwise, we enter our BaB to tighten the bounds. We maintain a dynamic
pool of intermediate bound domains, D = {(l(i),u(i))}mi=1, where m = |D| is the number of current
domains, and initially D = {(l,u)} with the intermediate bounds from the initial verification. In
each iteration of BaB, we pick a domain that has the worst verified bounds. For this domain, we
select a neuron to branch and obtain new subdomains. For the new subdomains, we update l,u for
the branched neurons, and we also use β parameters for the Lagrange multipliers in the branching
constraints. For each new subdomain, given updated l,u and the parameters α,β, we denote a
verified lower bound computed during BaB as V (h, l,u,α,β), and we optimize α and β to obtain
an optimized lower bound for h(x):

h(x) ≥ max
α,β

V (h, l,u,α,β), ∀x ∈ C. (5)

Subdomains with V (h, l,u,α,β) > 0 are verified and discarded, otherwise they are added to D for
further branching. We repeat the process until no domain is left in D and the verification succeeds, or
when the timeout is reached and the verification fails. We illustrate the framework in Appendix A.

3.2 BRANCHING FOR GENERAL NONLINEARITIES

3 2 1 0 1 2 3
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
x [-1.5, 2.0]
ReLU(x)
Branching at 0

(a) Branching a ReLU activation.

4 3 2 1 0 1 2 3 4
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5
x [-2.5, 3.0]
Sin(x)
Branching at 0.25
Linear relaxation

(b) Branching a Sin activation into
two branches.

4 3 2 1 0 1 2 3 4
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5
x [-2.5, 3.0]
Sin(x)
Branching at -2/3 and 7/6
Linear relaxation

(c) Branching a Sin activation into
three branches.

Figure 1: Illustration of branching the intermediate bound of a neuron with different activations. In
Figure 1b and 1c, the function is still nonlinear after branching, and we also show the linear relaxation
of different branches.

Branching on ReLU networks as studied by prior works is a special case of branching on general
nonlinearities. For ReLU networks, branching is needed only if li,j < 0 < ui,j for a neuron, and the
only reasonable way is to branch at 0 and split the intermediate bounds into two branches, [li,j , 0] and
[0,ui,j], so that ReLU is linear for both sides, as shown in Figure 1a. However, branching for general
nonlinearities on general computational graphs is more complex. First, branching can be needed even
if ui,j ≤ 0 or li,j ≥ 0 and it requires considering branching at points other than 0. Second, unlike
ReLU, general nonlinearities usually do not consist of two linear pieces, and the intermediate bounds
may be branched into more than two branches at once for tighter linear relaxation (Figure 1b v.s.
Figure 1c). Third, unlike typical activation functions, some nonlinearities may take more than one
input. For example, there may be a node computing x̂i = hi(x̂i−1, x̂i−2) = x̂i−1x̂i−2, as appeared
in Transformers (Vaswani et al., 2017; Shi et al., 2019) or LSTMs (Hochreiter & Schmidhuber,
1997; Ko et al., 2019). The multiplication between x̂i−1 and x̂i−2 is generally a nonlinear function
unless one of x̂i−1 and x̂i−2 is constant and does not depend on x. For such nonlinearities, there
are multiple input nodes that can be branched. Fourth, on general computational graphs, a node can
also be followed by multiple nonlinearities, as appeared in LSTMs, and then branching intermediate
bounds of this node can affect multiple nonlinearities.

To resolve these challenges, we propose a new and more general formulation for branching on general
nonlinearities for general computational graphs. Each time we consider branching the intermediate
bounds of a neuron j in a node i, namely [li,j ,ui,j], if node i is the input of some nonlinearity. We
consider branching the concerned neuron into K branches with branching points p(1)

i,j , · · · ,p
(K−1)
i,j ,

4

and then the intermediate bounds become:

[li,j ,ui,j]→ [li,j ,p
(1)
i,j], [p

(1)
i,j ,p

(2)
i,j], · · · , [p

(K−1)
i,j ,ui,j], (6)

for theK branches respectively. In this work, we instantiate Eq. (6) as uniformly branching [li,j ,ui,j]
into K branches where we mainly take K = 3 for non-ReLU models. We study the impact of
different K values in Appendix C.3.

We select the neuron to branch by a heuristic to approximately maximize the bound improvement
after the branching, as discussed in Section 3.4. If neuron j in node i is selected, we use the new
intermediate bounds of each branch to update the linear relaxation of the impacted nonlinearities. We
also add branching constraints parameterized by β, as will be discussed in Section 3.3. Then compute
new verified bounds for the branches by solving Eq. (5) with multiple iterations optimizing α and β.

Note that in our formulation, we consider each node that is the input to some nonlinearities and decide
if we branch on this node, and it allows us to naturally generalizes to nonlinearities with multiple
input nodes as well as multiple nonlinearities sharing the the input node. It would be more convenient
and general compared to considering the nonlinearities themselves, and how all the input nodes of a
nonlinearity shall be branched, yet the input nodes may be shared by some other nonlinearities.

3.3 GENERAL BRANCHING CONSTRAINTS

We formulate and encode general branching constraints into the linear bound propagation by β
Lagrange multipliers which have shown to be important for linear bound propagation in BaB (Wang
et al., 2021) which focused on ReLU. For each neuron j in a node i branched as Eq. (6), we formulate
branching constraints for the output x̂(1)

i,j , · · · , x̂
(K)
i,j in the K branches respectively:

x̂
(1)
i,j − p

(1)
i,j ≤ 0, x̂

(2)
i,j − p

(2)
i,j ≤ 0, p

(1)
i,j − x̂

(2)
i,j ≤ 0, · · · , p

(K−1)
i,j − x̂

(K)
i,j ≤ 0. (7)

Zhang et al. (2022) has proposed to encode general cutting plane constraints into linear bound
propagation to tighten the bounds. Our general branching constraints can also be viewed as a
particular type of cutting plane constraints. We add s

(k)
i,j for the k (1 ≤ k ≤ K)-th branch:

s
(1)
i,j := β

(1)
i,j (x̂i,j − p

(1)
i,j), s

(K)
i,j := β

(K)
i,j (p

(K−1)
i,j − x̂i,j), (8)

s
(k)
i,j := β

(k,1)
i,j (x̂i,j − p

(k)
i,j) + β

(k,2)
i,j (p

(k−1)
i,j − x̂i,j) for 2 ≤ k ≤ K − 1, (9)

which can be added to the right-hand-side of Eq. (1) as h(x) ≥
∑
i(Aix̂i +

∑
j si,j) + c, where

β(1)i,j , β
(K)
i,j , β

(k,1)
i,j , β

(k,2)
i,j ≥ 0 (2 ≤ k ≤ K − 1) are Lagrangian multipliers. Compared to Zhang

et al. (2022) which focused on utilizing general cutting plane constraints in linear bound propagation,
our new contribution here is on formulating general branching constraints which can then be handled
in a similar way as Zhang et al. (2022).

3.4 A NEW BRANCHING HEURISTIC FOR GENERAL NONLINEAR FUNCTIONS

In each branching iteration, we aim to pick some neuron j in node i on which the branching potentially
leads to the largest improvement on the verified bounds:

argmax
i,j

min
1≤k≤K

max
α,β

V (h,B(l, i, j, k), B(u, i, j, k),α,β), (10)

where we use B(l, i, j, k) to denote the updated intermediate lower bounds for the k-th branch after
branching neuron j in node i, and similarly B(u, i, j, k) for the upper bounds. Previous works
typically use some branching heuristic (Bunel et al., 2018; 2020; Lu & Mudigonda, 2020; De Palma
et al., 2021) which approximates the potential improvement of a branching in an efficient way.

Suppose we consider branching a neuron j in node i and we aim to estimate V (·) in Eq. (10) for each
branch k. In linear bound propagation, when the bounds are propagated to node i, we have:

h(x) ≥ A
(k)
i,j x̂i,j + c(k) ≥ V (h,B(l, i, j, k), B(u, i, j, k),α,β), (11)

where we use A
(k)
i,j and c(k) to denote the parameters in the linear bounds for the k-th branch. Note

that branching a neuron in node i only affects the linear relaxation of nonlinear nodes immediately

5

after node i (i.e., output nodes of i), and thus A(k)
i,j and c(k) can be computed by only propagating the

linear bounds from the output nodes of i using stored linear bounds rather than from the ultimate
output of h(x). If we want to exactly obtain V (h,B(l, i, j, k), B(u, i, j, k),α,β), then we need to
further propagate the linear bounds until the input of the network, which is costly.

For a more efficient estimation, the BaBSR heuristic (Bunel et al., 2020) originally for ReLU networks
essentially propagates the bounds only to the node before the branched one with an early stop, as
they then ignore the coefficients (A(k)

i−1,j for a feedforward NN) without propagating further. Note
that we have described this heuristic in a general way, although it was originally for ReLU networks
only. We call it “BaBSR-like” as a direct adaption from BaBSR (Bunel et al., 2020). However,
we find a BaBSR-like branching heuristic is suboptimal on the models with general nonlinearities
we experimented, as the heuristic ignores the important impact of the discarded coefficients on the
verified bounds.

We propose a new branching heuristic named Branching via Bound Propagation with Short-
cuts (BBPS), where we use a shortcut to directly propagate the bounds to the input. We expect
it to more precisely estimate the potential improvement than simply discarding terms during the
bound propagation, and more efficient than simply propagating the bounds layer by layer to the input.
Specifically, we save the linear bounds of all the potentially branched intermediate layers during the
initial verification before BaB. For every neuron j in intermediate layer i, we record:

∀x ∈ C, Âijx+ ĉij ≤ x̂ij ≤ Âijx+ ĉij , (12)

where Âij , ĉij , Âij , ĉij are parameters for the linear bounds. These are obtained when linear bound
propagation is used for computing the intermediate bounds [li,j ,ui,j] and the linear bounds are
propagated to the input x. We then use Eq. (12) to compute a lower bound for A(k)

i,j x̂i,j + c(k):

∀x ∈ C, A
(k)
i,j x̂i,j + c(k) ≥ (A

(k)
i,j,+Âij +A

(k)
i,j,−Âij)x+A

(k)
i,j,+ĉij +A

(k)
i,j,−ĉij + c(k), (13)

and then the RHS can be concretized by Eq. (4) and serve as an approximation for V (·) after branching.
In this way, the linear bounds are directly propagated from node i to input x and concretized using a
shortcut. Utilizing previously saved linear bounds has also been used in previous works (Shi et al.,
2019; Zhong et al., 2021) for speeding up bound propagation, while we show that it can serve as a
better branching heuristic for general nonlinearities as we will also empirically demonstrate.

4 EXPERIMENTS

Table 1: List of models with various non-
linearities in our experiments.

Model Nonlinearities in the model

Feedforward sigmoid, tanh, sin, GeLU
LSTM sigmoid, tanh, xy

ViT with ReLU ReLU, xy, x/y, x2,
√
x, exp(x)

ML4ACOPF ReLU, sigmoid, sin, xy, x2

Settings. We focus on verifying NNs with nonlineari-
ties beyond ReLU which has been widely studied in prior
works, and we experiment on models with various non-
linearities as shown in Table 1. We mainly consider the
commonly used `∞ robustness verification specification
on image classification. We compare with baselines (Singh
et al., 2019b; Müller et al., 2022c; Henriksen & Lomus-
cio, 2020; Ryou et al., 2021; Bonaert et al., 2021; Wu
et al., 2022; Wei et al., 2023) on models they support re-
spectively. We adopt some MNIST (LeCun et al., 2010)
models from existing works (Singh et al., 2019a;b; Müller et al., 2022c), along with their data
instances for verification. We also compute an upper bound on the number of potentially verifiable
instances by PGD attack (Madry et al., 2018), as a sound verification should not verify on instances
where a PGD attack can successfully discover counterexamples. Besides, we also train several new
models on CIFAR-10 (Krizhevsky et al., 2009) by PGD adversarial training (Madry et al., 2018)
using an `∞ perturbation with ε = 1/255 in both training and verification. For these CIFAR-10
models, we first run vanilla CROWN (Zhang et al., 2020; Xu et al., 2020) (without α,β or BaB) and
PGD attack (Madry et al., 2018) on the test set and remove instances on which either PGD attack
succeeds or vanilla CROWN can already verify the property. Therefore, we only retain instances that
can possibly be verified but are relatively hard to verify. If there are more than 100 instances after the
filtering, we only retain the first 100 instances. We set a timeout of 300 seconds for our BaB in all

6

these experiments. Details are in Appendix D. In addition, we also adopt an NN verification bench-
mark for verifying properties in the Machine Learning for AC Optimal Power Flow (ML4ACOPF)
problem, beyond robustness verification. And we show results on a ReLU network in Appendix C.2.

Table 2: Number of verified instances out of the first 100 test examples on MNIST for several Sigmoid
networks and Tanh networks along with their ε. The settings are the same as those in Müller et al.
(2022c). “L×W ” in the network names denote a fully-connected NN with L layers and W hidden
neurons in each layer. The upper bounds in the last row are computed by PGD attack.

Method
Sigmoid Networks Tanh Networks

6×100 6×200 9×100 ConvSmall 6×100 6×200 9×100 ConvSmall
ε=0.015 ε=0.012 ε=0.015 ε=0.014 ε=0.006 ε=0.002 ε=0.006 ε=0.005

DeepPoly (Singh et al., 2019b)ab 30 43 38 30 38 39 18 16
PRIMA (Müller et al., 2022c)a 53 73 56 51 61 68 52 30

VeriNet (Henriksen & Lomuscio, 2020)c 65 81 56 - 31 30 16 -
Wu et al. (2022)? 65 75 96? 63 - - - -

Vanilla CROWN (Zhang et al., 2018)b 53 63 49 65 18 24 44 55
α,β-CROWN (α only w/o BaB) 62 81 62 84 65 72 58 69

Our BaB (BBPS) 71 83 62 92 65 78 59 75
Upper bound 93 99 92 97 94 97 96 98

aResults for DeepPoly and PRIMA are directly from Müller et al. (2022c).
bWhile DeepPoly and CROWN are thought to be equivalent on ReLU networks (Müller et al., 2022c), these two
works adopt different relaxation for Sigmoid and Tanh, which results in different results here.
cResults for VeriNet are obtained by running the tool (https://github.com/vas-group-imperial/
VeriNet) by ourselves. VeriNet depends on the FICO Xpress commercial solver which requires a license
for models that are relatively large. FICO Xpress declined the request we submitted for the academic license,
directing us to obtain it via a (course) tutor, which is not applicable to our research. Thus results on ConvSmall
models are not available.
?We found that the result Wu et al. (2022) reported on the Sigmoid 9× 100 model exceeds the upper bound by
PGD attack (96 > 92), and thus the result tends to be not fully valid. Results on Tanh networks are unavailable.

Experiments on Sigmoid and Tanh networks for MNIST. We first experiment on Sigmoid net-
works and Tanh networks. Table 2 shows the results. On 6 out of the 8 models, our BaB with BBPS is
able to verify additional instances over using α only and further boost the performance of verification,
and our BaB outperforms all the non-CROWN baselines. We also find that improving on Sigmoid
9× 100 and Tanh 6× 100 networks by BaB is hard, as the initial bounds are typically too loose on
the unverifiable instances, possibly due to these models being trained by standard training without
robustness intervention in Müller et al. (2022c). In Figure 2, we plot the total number of verified
instances against the running time for various methods, showing that our method can verify more
instances compared to the baselines when the timeout threshold is at least around 10 seconds, and
BaB enables us to verify more instances as more time is allowed compared to using α only. We also
report the average running time in Appendix C.6.

0 100 200 300
Time (seconds)

0

50

100

150

200

Nu
m

be
r o

f v
er

ifi
ed

 in
st

an
ce

s

Sigmoid networks

0 100 200 300
Time (seconds)

0

50

100

150

200

Nu
m

be
r o

f v
er

ifi
ed

 in
st

an
ce

s

Tanh networks
Vanilla CROWN
DeepPoly
PRIMA
VeriNet

 only w/o BaB
Our BaB (BBPS)

Figure 2: Total number of verified instances against running time threshold, on the three fully-
connected Sigmoid networks (left) and three fully-connected Tanh networks (right) respectively in
Table 2. The ConvSmall models are not included due to missing results for VeriNet.

Experiments on feedforward networks with various activation functions on CIFAR-10.. In
Table 3, we show results for models with various activation functions on CIFAR-10 trained by
PGD. The results show that our BaB effectively improves verification beyond using α only without
BaB. Besides, the ablation studies show that using our BBPS branching heuristic usually improves
the performance over the BaBSR-like heuristic adapted from Bunel et al. (2020). Disabling β

7

https://github.com/vas-group-imperial/VeriNet
https://github.com/vas-group-imperial/VeriNet

Table 3: Number of verified instances out of 100 filtered instances on CIFAR-10 with ε = 1/255 for
feedforward networks with various activation functions.

Method Sigmoid Networks Tanh Networks Sine Networks GeLU Networks
4×100 4×500 6×100 6×200 4×100 6×100 4×100 4×200 4×500 4×100 4×200 4×500

PRIMA (Müller et al., 2022c)a 0 0 0 0 0 0 - - - - - -
Vanilla CROWNb 0 0 0 0 0 0 0 0 0 0 0 0
α only w/o BaBc 28 16 43 39 25 6 4 2 4 44 33 27

BaB (BaBSR-like) 34 17 44 41 35 8 54 30 10 64 53 37
BaB (BBPS, w/o β) 47 20 55 47 39 9 49 28 15 61 50 36

Our BaB (BBPS) 53 21 61 49 41 9 64 37 25 69 53 37
aResults for PRIMA are obtained by running ERAN (https://github.com/eth-sri/eran) which
contains PRIMA. PRIMA does not support sine or GeLU activations.
bWe have extended the support of vanilla CROWN to the GeLU activation, as discussed in Appendix B.3, which
was not supported in the original code.
cFor Sigmoid and Tanh networks, “α only w/o BaB” is equivalent to the existing α,β-CROWN which has
existing support for optimizable linear relaxation on Sigmoid and Tanh but not Sin or GeLU.

optimization worsens the results, which validates the effectiveness of encoding the general branching
constraints. For PRIMA and vanilla CROWN, as we only use relatively hard instances for verification
here, these two methods are unable to verify any instance in this experiment. For VeriNet, all the
models here are too large without a license for the FICO Xpress solver (we are unable to obtain an
academic license as mentioned in Table 2); we have not obtained the code to run Wu et al. (2022) on
these models either. Thus, we do not include the results for VeriNet or Wu et al. (2022).

Experiments on LSTMs. Next, we experiment on LSTMs containing more complex nonlinearities,
including both Sigmoid and Tanh activations, as well as multiplication as sigmoid(x) tanh(y) and
sigmoid(x)y. We compare with PROVER (Ryou et al., 2021) which is a specialized verification
algorithm for RNN outperforming earlier RNN verification works (Ko et al., 2019). While there are
other works on verifying RNN and LSTM, such as Du et al. (2021); Mohammadinejad et al. (2021);
Paulsen & Wang (2022), we have not found their code, and we also make orthogonal contributions
compared them on improving the relaxation for RNN verification. Thus, we omit them in our
experiments. We take the hardest model, an LSTM for MNIST, from the main experiments of
PROVER (other models can be verified by PROVER on more than 90% instances and are thus
omitted), where each 28 × 28 image is sliced into 7 frames for LSTM. We also use two LSTMs
trained by ourselves on CIFAR-10, where we linearly map each 32 × 32 image into 4 patches as
the input tokens, similar to ViTs with patches (Dosovitskiy et al., 2021). Table 4 shows the results.
Using α only without BaB can already outperform PROVER with specialized relaxation for RNN
and LSTM, and using BaB further boosts the performance.

Table 4: Number of verified instances out of 100 instances on MNIST and CIFAR-10 LSTM
networks. The MNIST model follows the setting of the hardest model in the main experiments
of PROVER (Ryou et al., 2021) with ε = 0.01. The CIFAR-10 models are trained by ourselves
with ε = 1/255. “LSTM-7-32” indicates an LSTM with 7 input frames and 32 hidden neurons,
similar for the other two models. Results for PROVER are obtained by running the tool (https:
//github.com/eth-sri/prover).

Method MNIST Model (Ryou et al., 2021) CIFAR-10 Models
LSTM-7-32 LSTM-4-32 LSTM-4-64

PROVER (Ryou et al., 2021) 63 8 3
α only w/o BaB 83 16 9

BaB (BaBSR-like) 84 17 12
Our BaB (BBPS) 86 25 15

Upper bound 98 100 100

Experiments on ViTs. We also experiment on ViTs, which contain nonlinearities that are less
studied as shown in Table 1. For ViTs, we compare with DeepT (Bonaert et al., 2021) which is
specialized for verifying Transformers without using BaB. We show the results in Table 5, where our
methods outperform DeepT and BaB effectively improves the verification. Besides, in Appendix C.1,
we also compare with Wei et al. (2023) which supports verifying attention networks but not the entire
ViT, and we experiment on models from Wei et al. (2023), where our methods also outperform Wei
et al. (2023).

8

https://github.com/eth-sri/eran
https://github.com/eth-sri/prover
https://github.com/eth-sri/prover

Table 5: Number of verified instances on ViTs for CIFAR-10 (ε = 1/255). “ViT-L-H” stands for L
layers and H heads. For each model, there are fewer than 100 instances after the filtering, shown as
the upper bounds. Results for DeepT are obtained by running the tool (https://github.com/
eth-sri/DeepT).

Method ViT-1-3 ViT-1-6 ViT-2-3 ViT-2-6

DeepT (Bonaert et al., 2021) 0 1 0 1
α only w/o BaB 1 3 11 7

BaB (BaBSR-like) 13 32 20 22
Our BaB (BBPS) 15 34 28 24

Upper bound 67 92 72 69

Experiments on ML4ACOPF. Finally, we experiment on models for the Machine Learning for
AC Optimal Power Flow (ML4ACOPF) problem (Guha et al., 2019), and we adopt the ML4ACOPF
neural network verification benchmark2, a standardized benchmark in 2023 Verification of Neural
Networks Competition (VNN-COMP). The benchmark consists of a NN with power demands as
inputs, and the output of the NN gives an operation plan of electric power plants. Then, the benchmark
aims to check for a few nonlinear constraint violations of this plan, such as power generation and
balance constraints. These constraints, as part of the computational graph to verify, involve many
nonlinearities including Sin, Sigmoid, multiplication, and square. Our framework is the first to
support this verification problem. Among the 23 benchmark instances, PGD attack only succeeds on
one instance, and our method (BaB + BBPS) verifies all the remaining 22 instances; without BaB,
optimizing α only can verify only 16 instances in this benchmark.

5 RELATED WORK

Branch-and-bound (BaB) has been shown to be an effective technique for NN verification (Bunel
et al., 2018; Lu & Mudigonda, 2020; Wang et al., 2018a; Xu et al., 2021; De Palma et al., 2021;
Kouvaros & Lomuscio, 2021; Wang et al., 2021; Henriksen & Lomuscio, 2021; Shi et al., 2022),
but most of the existing works focus on ReLU networks and are not directly applicable to networks
with nonlinearities beyond ReLU. On BaB for NNs with other nonlinearities, Henriksen & Lomuscio
(2020) conducted BaB on Sigmoid and Tanh networks, but their framework still depends on a
commercial LP solver which has been argued as less effective than recent NN verification methods
using linear bound propagation with branching constraints (Wang et al., 2021). Besides, Wu et al.
(2022) studied verifying Sigmoid networks with counter-example-guided abstraction refinement, but
their method is still specialized for Sigmoid. Moreover, these works have only considered S-shaped
activations, and there lacks a general framework supporting general nonlinearities beyond some
particular ones, which we address in this paper. Without using BaB, there are also other works
studying the relaxation in verifying NNs with various nonlinearities, such as RNNs and LSTMs (Ko
et al., 2019; Du et al., 2021; Ryou et al., 2021; Mohammadinejad et al., 2021; Zhang et al., 2023),
and also Transformers (Shi et al., 2019; Bonaert et al., 2021; Wei et al., 2023). These works have
orthogonal contributions compared to ours using BaB for further improvement above a base verifier.
In addition, there are works studying the branching heuristic in verifying ReLU networks, such as
filtering initial candidates with a more accurate computation (De Palma et al., 2021), using Graph
Neural Networks for the heuristic (Lu & Mudigonda, 2020), or using a heuristic guided with tighter
multiple-neuron relaxation (Ferrari et al., 2021), which may inspire future improvement on the BaB
for general nonlinearities.

6 CONCLUSIONS

To conclude, we propose a general BaB framework for NN verification involving general nonlineari-
ties. We also propose a new and more effective branching heuristic for BaB on general nonlinearities
and we extend optimized linear relaxation. Experiments on verifying NNs with various nonlinearities
demonstrate the effectiveness of our method.

2https://github.com/AI4OPT/ml4acopf_benchmark

9

https://github.com/eth-sri/DeepT
https://github.com/eth-sri/DeepT
https://github.com/AI4OPT/ml4acopf_benchmark

Limitations and Future work. There remain several limitations in this work to be resolved in the
future. As mentioned in Section 3.2, we have only used a simple way for deciding the branching
points, and it will be interesting for future works to investigate more sophisticated ways. Besides,
for the branching heuristic, future work may study the possibility of applying the latest progress on
ReLU networks to strengthen the branching heuristic for general nonlinearities.

REFERENCES

Stanley Bak, Changliu Liu, and Taylor Johnson. The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. arXiv preprint arXiv:2109.00498,
2021.

Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise
certification of transformers. In Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, pp. 466–481, 2021.

Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and Pawan Kumar Mudigonda. A
unified view of piecewise linear neural network verification. In Advances in Neural Information
Processing Systems, pp. 4795–4804, 2018.

Rudy Bunel, P Mudigonda, Ilker Turkaslan, P Torr, Jingyue Lu, and Pushmeet Kohli. Branch and
bound for piecewise linear neural network verification. Journal of Machine Learning Research, 21
(2020), 2020.

Alessandro De Palma, Rudy Bunel, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet Kohli,
Philip HS Torr, and M Pawan Kumar. Improved branch and bound for neural network verification
via lagrangian decomposition. arXiv preprint arXiv:2104.06718, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Tianyu Du, Shouling Ji, Lujia Shen, Yao Zhang, Jinfeng Li, Jie Shi, Chengfang Fang, Jianwei Yin,
Raheem Beyah, and Ting Wang. Cert-rnn: Towards certifying the robustness of recurrent neural
networks. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’21, pp. 516–534, 2021. ISBN 9781450384544. doi: 10.1145/3460120.3484538.

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A. Mann, and Pushmeet Kohli.
A dual approach to scalable verification of deep networks. In Proceedings of the Thirty-Fourth
Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, California, USA, August
6-10, 2018, pp. 550–559, 2018.

Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. Complete verification
via multi-neuron relaxation guided branch-and-bound. In International Conference on Learning
Representations, 2021.

Neel Guha, Zhecheng Wang, Matt Wytock, and Arun Majumdar. Machine learning for ac optimal
power flow. arXiv preprint arXiv:1910.08842, 2019.

Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement
and adversarial search. In ECAI 2020, pp. 2513–2520. IOS Press, 2020.

Patrick Henriksen and Alessio Lomuscio. Deepsplit: An efficient splitting method for neural network
verification via indirect effect analysis. In IJCAI, pp. 2549–2555, 2021.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An efficient
smt solver for verifying deep neural networks. In International Conference on Computer Aided
Verification, pp. 97–117, 2017.

10

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Ching-Yun Ko, Zhaoyang Lyu, Lily Weng, Luca Daniel, Ngai Wong, and Dahua Lin. POPQORN:
quantifying robustness of recurrent neural networks. In International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 3468–3477, 2019.

Panagiotis Kouvaros and Alessio Lomuscio. Towards scalable complete verification of relu neural
networks via dependency-based branching. In IJCAI, pp. 2643–2650, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical Report TR-2009, 2009.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

J Lu and P Mudigonda. Neural network branching for neural network verification. In Proceedings of
the International Conference on Learning Representations (ICLR 2020). Open Review, 2020.

Zhaoyang Lyu, Ching-Yun Ko, Zhifeng Kong, Ngai Wong, Dahua Lin, and Luca Daniel. Fastened
CROWN: tightened neural network robustness certificates. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, pp. 5037–5044, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Sara Mohammadinejad, Brandon Paulsen, Jyotirmoy V Deshmukh, and Chao Wang. Diffrnn:
Differential verification of recurrent neural networks. In Formal Modeling and Analysis of Timed
Systems: 19th International Conference, FORMATS 2021, Paris, France, August 24–26, 2021,
Proceedings 19, pp. 117–134. Springer, 2021.

Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T Johnson. The third
international verification of neural networks competition (vnn-comp 2022): Summary and results.
arXiv preprint arXiv:2212.10376, 2022a.

Mark Niklas Müller, Franziska Eckert, Marc Fischer, and Martin Vechev. Certified training: Small
boxes are all you need. arXiv preprint arXiv:2210.04871, 2022b.

Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vechev.
Prima: general and precise neural network certification via scalable convex hull approximations.
Proceedings of the ACM on Programming Languages, 6(POPL):1–33, 2022c.

Brandon Paulsen and Chao Wang. Linsyn: Synthesizing tight linear bounds for arbitrary neural
network activation functions. In Tools and Algorithms for the Construction and Analysis of Systems:
28th International Conference, TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2–7, 2022, Proceedings,
Part I, pp. 357–376. Springer, 2022.

Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh, Andrei Dan, and Martin Vechev.
Scalable polyhedral verification of recurrent neural networks. In International Conference on
Computer Aided Verification, pp. 225–248, 2021.

Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie Huang, and Cho-Jui Hsieh. Robustness verifica-
tion for transformers. In International Conference on Learning Representations, 2019.

Zhouxing Shi, Yihan Wang, Huan Zhang, J Zico Kolter, and Cho-Jui Hsieh. Efficiently computing
local lipschitz constants of neural networks via bound propagation. Advances in Neural Information
Processing Systems, 35:2350–2364, 2022.

Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin T. Vechev. Beyond the single neu-
ron convex barrier for neural network certification. In Advances in Neural Information Processing
Systems, pp. 15072–15083, 2019a.

11

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for
certifying neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):41,
2019b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety
analysis of neural networks. In Advances in Neural Information Processing Systems, pp. 6369–
6379, 2018a.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal security analysis
of neural networks using symbolic intervals. In 27th {USENIX} Security Symposium ({USENIX}
Security 18), pp. 1599–1614, 2018b.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. Beta-
crown: Efficient bound propagation with per-neuron split constraints for neural network robustness
verification. Advances in Neural Information Processing Systems, 34:29909–29921, 2021.

Dennis Wei, Haoze Wu, Min Wu, Pin-Yu Chen, Clark Barrett, and Eitan Farchi. Convex bounds on
the softmax function with applications to robustness verification. In International Conference on
Artificial Intelligence and Statistics, pp. 6853–6878. PMLR, 2023.

Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 5283–5292, 2018.

Haoze Wu, Teruhiro Tagomori, Alexander Robey, Fengjun Yang, Nikolai Matni, George Pappas,
Hamed Hassani, Corina Pasareanu, and Clark Barrett. Toward certified robustness against real-
world distribution shifts. arXiv preprint arXiv:2206.03669, 2022.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified
robustness and beyond. In Advances in Neural Information Processing Systems, 2020.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. In International Conference on Learning Representations, 2021.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network
robustness certification with general activation functions. In Advances in Neural Information
Processing Systems, pp. 4944–4953, 2018.

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane S. Boning,
and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust neural networks. In
International Conference on Learning Representations, 2020.

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
General cutting planes for bound-propagation-based neural network verification. arXiv preprint
arXiv:2208.05740, 2022.

Yunruo Zhang, Tianyu Du, Shouling Ji, Peng Tang, and Shanqing Guo. Rnn-guard: Certified robust-
ness against multi-frame attacks for recurrent neural networks. arXiv preprint arXiv:2304.07980,
2023.

Yuyi Zhong, Quang-Trung Ta, Tianzuo Luo, Fanlong Zhang, and Siau-Cheng Khoo. Scalable and
modular robustness analysis of deep neural networks. In Programming Languages and Systems:
19th Asian Symposium, APLAS 2021, Chicago, IL, USA, October 17–18, 2021, Proceedings 19, pp.
3–22. Springer, 2021.

12

A ADDITIONAL ILLUSTRATION

We illustrate the overall framework in Figure 3.

Specification

>0?

Solve 𝑉!(ℎ, 𝒞, 𝛂,)

Yes

Verified

Pick out a domain

Select and branch a neuron

Solve 𝑉(ℎ, 𝐥, 𝐮, 𝛂, 𝛃)

Add unverified domains

Branch-and-Bound (BaB)

No

No domain left
Verified

Timeout
Failed

Figure 3: Illustration of our framework, as described in Section 3.1.

B ADDITIONAL OPTIMIZABLE LINEAR RELAXATION

In this section, we derive new optimizable linear relaxation for nonlinearities including multiplication,
sine, and GeLU, which are not originally supported in α,β-CROWN for optimizable linear relaxation.

B.1 OPTIMIZABLE LINEAR RELAXATION FOR MULTIPLICATION

For each elementary multiplication xy where x ∈ [x, x], y ∈ [y, y] are the intermediate bounds for x
and y, we aim to relax and bound xy as:

∀x ∈ [x, x], y ∈ [y, y], ax+ by + c ≤ xy ≤ ax+ by + c, (14)

where a, b, c, a, b, c are parameters in the linear bounds. Shi et al. (2019) derived optimal parameters
that minimize the gap between the relaxed upper bound and the relaxed lower bound:

argmin
a,b,c,a,b,c

∫
x∈[x,x]

∫
y∈[y,y]

(ax+ by + c)− (ax+ by + c) s.t. Eq. (14). (15)

However, the optimal parameters they found only guarantee that the linear relaxation is optimal for
this node, but not the final bounds after conducting a bound propagation on the entire NN. Therefore,
we aim to make these parameters optimizable to tighten the final bounds as previous works did for
ReLU networks or S-shaped activations (Xu et al., 2021; Lyu et al., 2020).

We notice that Shi et al. (2019) mentioned that there are two solutions for a, b, c and a, b, c respectively
that solves Eq. (15):

a1 = y

b1 = x

c1 = −xy
,

a1 = y

b1 = x

c1 = −xy
, (16)

a2 = y

b2 = x

c2 = −xy
,

a2 = y

b2 = x

c2 = −xy
. (17)

Therefore, to make the parameters optimizable, we introduce parameters α and α, and we interpolate
between Eq. (16) and Eq. (17) as:

a = αy + (1− α)y
b = αx+ (1− α)x
c = −αxy − (1− α)xy

s.t. 0 ≤ α ≤ 1, (18)

13

a = αy + (1− α)y
b = αx+ (1− α)x
c = −αxy − (1− α)xy

s.t. 0 ≤ α ≤ 1. (19)

It is easy to verify that interpolating between two sound linear relaxations satisfying Eq. (14) still
yields a sound linear relaxation. And α and α are part of all the optimizable linear relaxation
parameters α mentioned in Section 2.

B.2 OPTIMIZABLE LINEAR RELAXATION FOR SINE

We also derive new optimized linear relaxation for periodic functions, in particular sin(x). For sin(x)
where x ∈ [x, x], we aim to relax and bound sin(x) as:

∀x ∈ [x, x], ax+ b ≤ sin(x) ≤ ax+ b, (20)

where a, b, a, b are parameters in the linear bounds. A non-optimizable linear relaxation for sin
already exists in α,β-CROWN and we adopt it as an initialization and focus on making it optimizable.
At initialization, we first check the line connecting (x, sin(x)) and (x, sin(x)), and this line is adopted
as the lower bound or the upper bound without further optimization, if it is a sound bounding line.

Otherwise, a tangent line is used as the bounding line with the tangent point being optimized. Within
[x, x], if sin(x) happens to be monotonic with at most only one inflection point, the tangent point can
be optimized in a way similar to bounding an S-shaped activation (Lyu et al., 2020), as illustrated in
Figure 4.

3 2 1 0 1 2 3
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Sin(x)
lower bound
upper bound
x [-1.5, 1.5]

Figure 4: Linear relaxation for a Sin activation in an input range [−1.5, 1.5] where the function is
S-shaped.

Otherwise, there are multiple extreme points within the input range. Initially, we aim to find a tangent
line that passes (x, sin(x)) as the bounding line. Since xmay be at different cycles of the sin function,
we project into the cycle with range [−0.5π, 1.5π], by taking x̃l = x− 2klπ, where kl = b

x+0.5π
2π c.

With a binary search, we find a tangent point αl on the projected cycle that satisfies

sin′(αl)(αl − x̃l) + sin(x̃l) = sin(αl), (21)

which corresponds to a tangent point tl = αl+2klπ at the original cycle of x, and for any tangent point
within the range of [αl + 2klπ, 1.5π + 2klπ], the tangent line is a valid lower bound. Similarly, we
also consider the tangent line passing (x, sin(x)), and we take x̃l = x− 2klπ, where kl = bx−1.5π2π c,
so that x̃l is within range [1.5π, 3.5π]. We also conduct a binary search to find the tangent point αl,
which corresponds to to αl + 2klπ in the original cycle of x, and for any tangent point within the
range [1.5π + 2klπ, αl + 2klπ], the tangent line is also a valid lower bound. We make the tangent
point optimizable with a parameter αl (αl ≤ αl ≤ αl), which corresponds to a tangent line at tangent
point tl as the lower bound in Eq. (20) and Figure 5:{

a = sin′(tl)

b = sin(tl)− atl
, where

{
tl = αl + 2klπ if αl ≤ αl ≤ 1.5π

tl = αl + 2klπ if 1.5π < αl ≤ αl
. (22)

14

In particular, when αl = 1.5π, both αl + 2klπ and αl + 2klπ are tangent points for the same tangent
line.

4 2 0 2 4 6 8
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Sin(x)
lower bound
x [-3.3, 6.5]
Optimization range

(a) The lower bound of Sin activa-
tion when αl = αl.

4 2 0 2 4 6 8
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Sin(x)
lower bound
x [-3.3, 6.5]
Optimization range

(b) The lower bound of Sin activa-
tion when αl = 1.5π.

4 2 0 2 4 6 8
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Sin(x)
lower bound
x [-3.3, 6.5]
Optimization range

(c) The lower bound of Sin activa-
tion when αl = αl.

Figure 5: Optimizing the lower bound of a Sin activation, where “Optimization range” shows all the
valid tangent points for the lower bound during the optimization.

The derivation for the upper bound is similar. We take x̃u = x − 2kuπ, where ku = bx−0.5π2π c,
so that x̃u is in range [0.5π, 2.5π]. And we take x̃u = x − 2kuπ, where ku = bx−2.5π2π c, so that
x̃u is in range [2.5π, 4.5π]. Let αu be the tangent point where the tangent line crosses x̃u, and αu
be the tangent point where the tangent line crosses x̃u, as found by a binary search. We define an
optimizable parameter αu (αu ≤ αu ≤ αu) which corresponds to a tangent line as the upper bound:{

a = sin′(tu)

b = sin(tu)− atu
, where

{
tu = αu + 2kuπ if αu ≤ αu ≤ 2.5π

tu = αu + 2kuπ if 2.5π < αu ≤ αu
. (23)

B.3 OPTIMIZABLE LINEAR RELAXATION FOR GELU

For GeLU function where x ∈ [x, x] are the intermediate bounds for x, we aim to relax and bound
GeLU(x) as:

∀x ∈ [x, x], ax+ b ≤ GeLU(x) ≤ ax+ b, (24)

where a, b, a, b are parameters in the linear bounds.

Given input range [x, x], if x ≤ 0 or x ≥ 0, the range contains only one inflection point, the tangent
point can be optimized in a way similar to bounding an S-shaped activation (Lyu et al., 2020). In
other cases, x < 0 and x > 0 holds. For the upper bound, we use the line passing (x,GeLU(x)) and
(x,GeLU(x)). For the lower bound, we derive two sets of tangent lines that crosses (x,GeLU(x))
and (x,GeLU(x)) with tangent points denoted as α and α respectively. We determine α, α using a
binary search that solves:{

GeLU′(α)(α− x) + GeLU(x) = GeLU(α)

GeLU′(α)(α− x) + GeLU(x) = GeLU(α)
. (25)

Any tangent line with a tangent point α (α ≤ α ≤ α) is a valid lower bound, which corresponds to
the lower bound in Eq. (24) with:{

a = GeLU′(α)

b = GeLU(α)− αGeLU′(α)
s.t. α ≤ α ≤ α. (26)

C ADDITIONAL RESULTS

C.1 EXPERIMENTS ON SELF-ATTENTION NETWORKS FROM WEI ET AL. (2023)

To compare with Wei et al. (2023) that only supports verifying single-layer self-attention networks
but not the entire ViT, we adopt pre-trained models from Wei et al. (2023) and run our verification
methods under their settings, with 500 test images in MNIST using ε = 0.02. We show the results in
Table 6, where our methods also outperform Wei et al. (2023) on all the models.

15

Table 6: Number of verified instances out of 500 instances in MNIST with ε = 0.02. A-small,
A-medium and A-big are three self-attention networks with different parameter sizes from Wei et al.
(2023).

Method A-small A-medium A-big

Wei et al. (2023) 406 358 206

α only w/o BaB 444 388 176
BaB (BBPS) 450 455 232
Upper bound 463 479 482

C.2 EXPERIMENTS ON A RELU NETWORK

Table 7: Results on a “ConvSmall” model with ReLU activation (Singh et al., 2019a;b; Müller et al.,
2022c) on 1000 instances from CIFAR-10. Percentage of instances verified by various methods are
reported. For methods other than PRIMA, we use α,β-CROWN as the underlying verifier but vary
the branching heuristic. See explanation about the backup score in Appendix C.2.

Method Verified

PRIMA 44.6%
BaBSR w/o backup score 45.6%
BaBSR w/ backup score 46.2%

Backup score only 45.0%
BBPS w/o backup score 46.0%
BBPS w/ backup score 46.2%

In this section, we study the effect of our BBPS heuristic on ReLU activation. We adopt settings in
Singh et al. (2019a;b); Müller et al. (2022c) and experiment on a “ConvSmall” model with ReLU
activation. The verification is evaluated on 1000 instances on CIFAR-10, following prior works. We
show the results in Table 7, We find that on this ReLU network, our BBPS also works better than
the BaBSR heuristic, when there is no backup score (46.0% verified by BBPS v.s. 45.6% verified
by BaBSR). However, we find that recent works typically add a backup score for BaBSR, which is
another heuristic score that serves as a backup for neurons with extremely small BaBSR scores. The
backup score did not exist in the original BaBSR heuristic (Bunel et al., 2020) but it appeared in
De Palma et al. (2021) and has also been adopted by works such as Wang et al. (2021) when using
BaBSR for ReLU networks. This backup score basically uses the intercept of the linear relaxation
for the upper bound of a ReLU neuron that needs branching. Unlike BaBSR or BBPS, the backup
score does not aim to directly estimate the change on the bounds computed by bound propagation,
but aims to use the intercept to reflect the reduction of the linear relaxation after the branching. When
the backup score is combined with BaBSR or BBPS for ReLU networks, the backup score seems to
dominate the performance, where both BaBSR and BBPS have similar performance with the backup
score added (46.2% verified), which hides the underlying improvement of BBPS over BaBSR by
providing a more precise estimation. However, the backup score is specifically for ReLU, assuming
that the intercept of the linear relaxation can reflect the reduction of the linear relaxation, which is not
the case for general nonlinearities. We leave it for future work to study the possibility of designing a
backup score for general nonlinearities.

C.3 EXPERIMENTS ON THE NUMBER OF BRANCHES

As mentioned in Section 3.2, we mainly use K = 3 for the number of branches in our main
experiments, to demonstrate the ability of our framework for handling a general number of branches.
In this section, we conduct a study on the impact of K. In Table 8, we compare the performance of
our BaB with K = 2 and K = 3, respectively. On Sigmoid networks, we find that K = 2 and K = 3
yield comparable results. However, on networks with the sin activation which is more nonlinear
compared to Sigmoid, using K = 3 significantly outperforms K = 2. This result is also consistent
with the illustration in Figure 1b and 1c, where using 3 branches yields much tighter linear relaxation

16

Table 8: Number of verified instances out of 100 filtered test examples on CIFAR-10 with ε = 1/255,
for our BaB with different number of branches K. The models and the verified specifications follow
Table 3.

Method Sigmoid Networks Sine Networks
4× 100 4× 500 6× 100 4× 200 4× 100 4× 200 4× 500

Our BaB (K = 2) 54 20 62 49 54 34 20
Our BaB (K = 3) 53 21 61 49 63 39 25

than using 2 branches for the sin activation. The results demonstrate the effectiveness and potential
of our framework supporting a general number of branches, on NNs involving functions that are
relatively more nonlinear.

C.4 EXPERIMENTS ON FILTERING IN THE BRANCHING HEURISTIC

De Palma et al. (2021) proposed a branching heuristic named Filtered Smart Branching (FSB) which
filters initial candidates selected by estimated bound improvements, with an additional step to compute
more precise bound improvements by full linear bound propagation. The filtering mechanism is
independent from our contribution on BBPS for computing initial estimations. In this section, we
study the effect of the filtering mechanism when it is combined with the BaBSR-like heuristic and
our BBPS heuristic, respectively, for selecting the initial candidates. Table 9 shows the results. We
find that the filtering does not improve the performance here, possibly because their improved bound
estimation is not sufficiently strong compared to the additional cost. Adding filtering sometimes
hurts the performance more for BBPS compared to BaBSR-like, as BBPS tends to verify more hard
instances, where the additional cost tends to cause timeout more easily when the runtime is originally
long for the hard instances. We leave it for future work to study improving the filtering mechanism
for NNs with general nonlinearities.

Table 9: Number of verified instances out of 100 filtered test examples on CIFAR-10 with ε = 1/255,
for BaB with the BaBSR-like heuristic and our BBPS, respectively, when the filtering in the branching
heuristic, is enabled and disabled, respecitvely. The models and the verified specifications follow
Table 3.

Heuristic Filtering Sigmoid Networks Tanh Networks
4× 100 4× 500 6× 100 4× 200 4× 100 6× 100

BaBSR-like × 34 17 44 41 35 8
BaBSR-like X 33 17 44 41 34 8

BBPS × 53 21 61 49 41 9
BBPS X 50 21 56 48 41 9

C.5 EXPERIMENTS ON MODELS WITH OTHER ROBUST TRAINING ALGORITHMS

We also experiment on models trained by robust training algorithms other than PGD. As a case
study, we consider Small Adversarial Bounding Regions (SABR) (Müller et al., 2022b). SABR
propagates adversarially selected small boxes for certified robust training and it relies on a complete
verifier at test time. With SABR, we train 4 fully-connected Sigmoid networks on CIFAR-10 with
ε = 1/255, and we show the results in Table 10. The results demonstrate that our BaB with the BBPS
heuristic effectively verifies more hard instances, compared to the verifier without BaB or BaB with
the BaBSR-like heuristic.

C.6 RESULTS ON THE RUNNING TIME

In Figure 2, we have plotted the total number of verified instances against various running time
threshold. In this section, we report the average running time for the experiment in Figure 2, and we
show the results in Table 11. We first compute the average running time only on instances verified
by each method. The average running time of our BaB is slightly higher than most baselines and

17

Table 10: Number of verified instances out of the 100 filtered test examples on CIFAR-10 for several
Sigmoid networks trained by SABR with ε = 1/255.

Method Sigmoid Networks
4×100 4×500 6×100 6×200

Vanilla CROWN 0 0 0 0
α only w/o BaB 59 51 60 65

BaB (BaBSR-like) 73 65 71 76
Our BaB (BBPS) 74 75 76 77

is much lower than PRIMA. This evaluation tends to bias towards methods that solve much fewer
hard instances, as hard instances tend to require larger running time. Therefore, we also compute the
average running time on all the instances, where we use the timeout (300 seconds in our experiments)
as the running time for the instances that are not verified. Under this evaluation, the average running
time of our BaB is lower than all the other methods. However, this evaluation can still be affected by
the timeout and is thus not perfect either. Compared to the average running time, the plots in Figure 2
can more comprehensively reflect the time cost and the number of verified instances of different
methods.

Table 11: Average running time of different methods for models in Figure 2.

Method
Average running time (s)

Verified instances All instances
Sigmoid Networks Tanh Networks Sigmoid Networks Tanh Networks

Vanilla CROWN 0.91 1.34 135.50 214.39
DeepPoly 0.66 0.46 189.24 205.15
PRIMA 139.55 107.84 202.12 184.06
VeriNet 0.68 1.81 98.45 223.46

α,β-CROWN (α only w/o BaB) 1.78 2.87 96.22 106.87
Our BaB (BBPS) 5.48 4.47 87.94 101.01

D IMPLEMENTATION DETAILS

Verification. We implement our verification algorithm based on auto_LiRPA3 and α,β-CROWN4,
both under the BSD-3-Clause license. We use the Adam optimizer (Kingma & Ba, 2015) to optimize
α and β with an initial learning rate of 0.1 and the learning rate is decayed by 2% after each iteration.
To solve Vα(h, C,α) in the initial verification, we optimize α for at most 100 iterations. And to solve
V (h, l,u,α,β) during BaB, we optimize α and β for at most 50 iterations. Our BaB is batched
where multiple domains are branched in parallel, and the batch size is dynamic tuned based on the
model size to fit the GPU memory.

Training the models. To train our models on CIFAR-10, we use PGD adversarial training (Madry
et al., 2018). We use 7 PGD steps during the training and the step size is set to ε/4. For training
the Sigmoid networks in Table 3, we use the SGD optimizer with a learning rate of 5 × 10−2 for
100 epochs; and for training the Tanh networks, we use the SGD optimizer with a learning rate of
1 × 10−2 for 100 epochs. For training the LSTMs in Table 4, we use the Adam optimizer with a
learning of 10−3 for 30 epochs. And for training the ViTs, we use the Adam optimizer with a learning
of 5 × 10−3 for 100 epochs. For Sin networks, we use the SGD optimizer with a learning rate of
1× 10−3 for 100 epochs

3https://github.com/Verified-Intelligence/auto_LiRPA
4https://github.com/Verified-Intelligence/alpha-beta-CROWN

18

https://github.com/Verified-Intelligence/auto_LiRPA
https://github.com/Verified-Intelligence/alpha-beta-CROWN

	Introduction
	Background
	Method
	Overall Framework
	Branching for General Nonlinearities
	General Branching Constraints
	A New Branching Heuristic for General Nonlinear Functions

	Experiments
	Related Work
	Conclusions
	Additional Illustration
	Additional Optimizable Linear Relaxation
	Optimizable Linear Relaxation for Multiplication
	Optimizable Linear Relaxation for Sine
	Optimizable Linear Relaxation for GeLU

	Additional Results
	Experiments on Self-Attention Networks from wei2023convex
	Experiments on a ReLU Network
	Experiments on the Number of Branches
	Experiments on Filtering in the Branching Heuristic
	Experiments on Models with Other Robust Training Algorithms
	Results on the Running Time

	Implementation Details

