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Certified Robustness and Certified Robust Training

DNN

Logits

-5.889 airplane
0.1203 automobile
-4.2943 bird
1.3597 cat
0.1594 deer
6.032 dog
-6.2416 frog
-2.878 horse
-1.4488 ship
-9.332 truck

x

DNN

Worst-case logits

-0.889 airplane ↑
0.7203 automobile ↑
-0.2943 bird ↑
4.3597 cat ↑
1.1594 deer ↑
2.032 dog ↓

0.2416 frog ↑
-0.878 horse ↑
1.4488 ship ↑
-1.332 truck ↑
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Certified Robustness

Certified Robustness studies whether a model is provably safe given a perturbation set.
Safe if the score of the ground-truth label is provably larger than all other classes in the
worst-case logits under perturbation.

Certified Robust Training

Minimize the upper bound of worst-case loss to improve the certified robustness of models:
min

θ
L(fθ, x, y, ϵ), where L(fθ, x, y, ϵ) ≥ max

∥θ∥∞≤ϵ
L(fθ, x + δ, y).

Interval Bound Propagation Training (Mirman et al., 2018; Gowal et al., 2018)

A simple but efficient method for computing the output bounds of neural networks.
It computes the interval lower and upper bounds for each neuron and propagates bounds
across layers.

Figure 1. Illustration of IBP, from Gowal et al., 2018.

Problem Settings

(Du et al, 2019a;b) proved that on randomly initialized and overparameterized two-layer
neural networks for standard training, SGD is guaranteed to converge to zero training error
with high probability.
But IBP training has a different training scheme compared to standard training and is often
hard to achieve low errors in practice.
We aim to theoretically analyze the convergence of IBP training under SGD.

Data

Training set {(xi, yi) : i ∈ [n]}.
∀i ∈ [n], xi ∈ [ϵ, 1]d, ∥xi∥2 ≥ ξ > 0.
For perturbation radius ϵ,

∀i, j ∈ [n], i ̸= j, ∀x′
i ∈ B∞(xi, ϵ), ∀x′

j ∈ B∞(xj, ϵ), x′
i ∦ x′

j,

where B∞(xi, ϵ) stands for the ℓ∞-ball with radius ϵ centered at xi.

Model and Loss Function

A two-layer neural network for a binary classification task:

f(W, a, xi) = 1√m

m∑
r=1

arσ(w⊤
r xi),

with standard logistic loss:

L =
n∑

i=1
l(yif(W, a, xi)) =

n∑
i=1

log
(
1 + exp(−ui(W, a, xi))

)
.

where ui(W, a, xi) = yif(W, a, xi).
Upper bound of worst-case loss (IBP loss) L under perturbation radius ϵ:

L ≥
n∑

i=1
max

∆i

{
log
(
1 + exp(−yif(W, a, xi + ∆i))

)
| ∥∆i∥∞ ≤ ϵ

}
.

L =
n∑

i=1
log(1 + exp(−ui)), ui = 1√m

m∑
r=1

{
1(yiar = 1)σ

(
w⊤

r xi − ϵ∥wr∥1
)

+ 1(yiar = −1)σ
(
w⊤

r xi + ϵ∥wr∥1
)}

.

Gradient Flow

We consider gradient flow – gradient descent with infinitesimal step size, where

∀r ∈ [m], dwr(t)
dt = − ∂L(t)

∂wr(t)
.

Main Results
Main Theorem
Suppose the assumptions hold for the training data, and the ℓ∞ perturbation radius satisfies

ϵ ≤ O
(

min
(

δ2λ2
0

d2.5n3,
√
2dR

log(
√

2πd
R ξ)

))
, where R = cδλ0

d1.5n2, c =
√
2πξ
384 . For a two-layer ReLU network,

suppose its width for the first hidden layer satisfies m ≥ Ω
((

d1.5n4δλ0
δ2λ2

0−ϵd2.5n4

)2)
, and the network

is randomly initialized as ar ∼ unif[{1, −1}], wr ∼ N(0, I), with the second layer fixed during
training. Then for any confidence δ(0<δ <1), with probability at least 1− δ, IBP training with
gradient flow can converge to zero training error.
Implications

For a given ϵ, as long as it satisfies an upper bound on ϵ which is dependent on the training
dataset, with a sufficiently large width m, convergence of IBP training is guaranteed with
high probability.
When ϵ is larger than the upper bound, IBP training is not guaranteed to converge under our
analysis even with arbitrarily large m, which is essentially different from analysis on standard
training and implies a possible limitation of IBP training.

Proof Summary
To prove this theorem:

We first analyze the stability of Gram matrix Hij(t) =
∑m

r=1

⟨
∂ui(t)
∂wr(t),

∂uj(t)
∂wr(t)

⟩
during IBP

training, and we show that λmin(H(t)) remains positive with high probability.
When H(t) remains positive definite, IBP loss descends in a linear convergence rate.
We then reach constraints on ϵ and requirement on network width m to guarantee the
convergence of IBP training.

Experiments

MNIST 2 v.s. 5 binary classification.
Compared to standard training, for the same width m, IBP has higher training errors.
For relatively large ϵ (ϵ = 0.04), even if we enlarge m up to 80,000 limited by the memory of
a single GPU, IBP error remains high.
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(a) Final training error of standard training and IBP.
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(b) Final training error of IBP training.
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