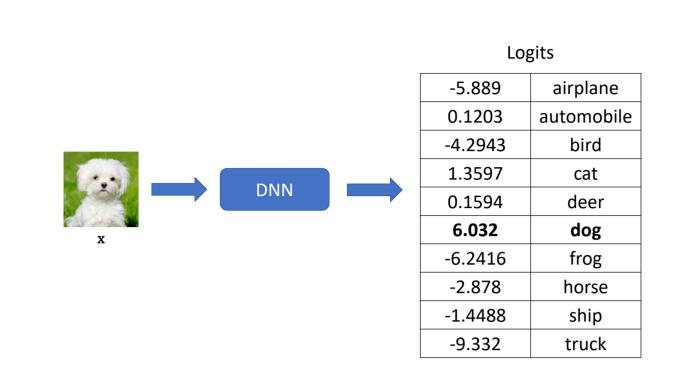
Fast Certified Robust Training with Short Warmup

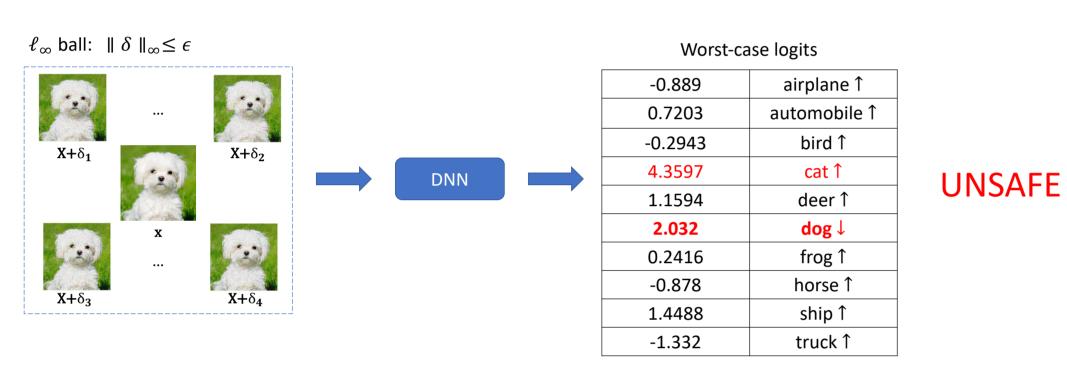
Zhouxing Shi ^{1*}, Yihan Wang^{1*}, Huan Zhang^{1,2}, Jinfeng Yi³, Cho-Jui Hsieh¹

 1 University of California, Los Angeles 2 Carnegie Mellon University 3 JD Al Research

*Equal contribution

Certified Robustness and Certified Robust Training





Certified Robustness:

- It checks whether the model predicts correctly under the worst-case perturbation.
- Find the tractable bounds of the output logits.
- Safe if the lower bound of ground truth is larger than the upper bound of the others.
- Or the lower bound of the margin is larger than zero.

Certified Robust Training:

• Minimize an upper bound of the worst-case loss:

$$\min_{\theta} \overline{L}(f_{\theta}, \mathbf{x}, y, \epsilon), \quad \text{where } \overline{L}(f_{\theta}, \mathbf{x}, y, \epsilon) \geq \max_{\|\theta\|_{\infty} \leq \epsilon} L(f_{\theta}, \mathbf{x} + \delta, y).$$
• It generally requires a **long** warmup/ramp-up schedule for ϵ .

Interval Bound Propagation (IBP) (Mirman et al., 2018; Gowal et al., 2018):

- Method to compute the output bounds.
- It computes and propagates an interval lower and upper bound for each neuron.

Motivations:

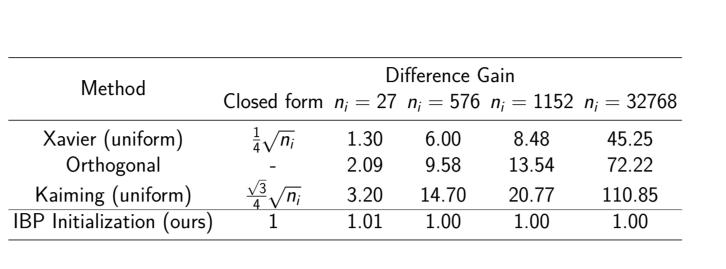
- Existing works using long training schedules are costly.
- We significantly reduce training schedules while maintain or even improve the robustness.

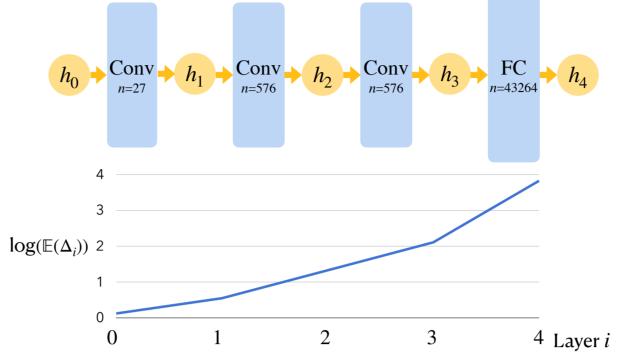
Issue in Existing IBP Training

Exploded Bounds:

• For affine layer $\mathbf{h}_i = \mathbf{W}_i \mathbf{z}_{i-1} + \mathbf{b}_i$, IBP computes:

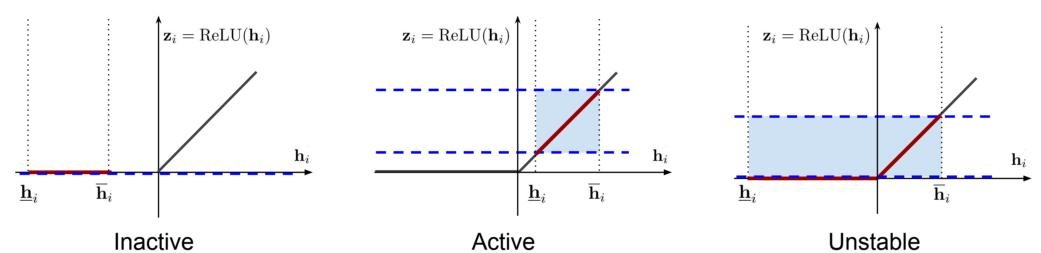
$$\underline{\mathbf{h}}_i = \mathbf{W}_{i,+}\underline{\mathbf{z}}_{i-1} + \mathbf{W}_{i,-}\overline{\mathbf{z}}_{i-1} + \mathbf{b}_i, \quad \overline{\mathbf{h}}_i = \mathbf{W}_{i,+}\overline{\mathbf{z}}_{i-1} + \mathbf{W}_{i,-}\underline{\mathbf{z}}_{i-1} + \mathbf{b}_i.$$





- Tightness of bounds, $\Delta_i = \overline{\mathbf{h}}_i \underline{\mathbf{h}}_i = |\mathbf{W}_i|(\overline{\mathbf{z}}_{i-1} \underline{\mathbf{z}}_{i-1})$, grows as $\mathbb{E}(\Delta_i) = \frac{n_i}{2}\mathbb{E}(|\mathbf{W}_i|)\mathbb{E}(\Delta_{i-1})$, for fan-in number n_i .
- Difference gain as $\mathbb{E}(\Delta_i)/\mathbb{E}(\Delta_{i-1}) = \frac{n_i}{2}\mathbb{E}(|\mathbf{W}_i|)$ is large for existing weight initialization.

Imbalanced ReLU States



- IBP tends to prefer inactive (dead) neurons for tighter bounds, but it can harm training.
- Shorter ramp-up leads to harder optimization and more severe imbalance.

The Proposed Method

IBP initialization:

• Initialize weights with a normal distribution, such that the difference gain is 1:

$$rac{n_i}{2}\mathbb{E}(|\mathbf{W}_i|) = rac{n_i}{2}\sqrt{2/\pi}\sigma_i = 1, \quad \Rightarrow \ \sigma_i = rac{\sqrt{2\pi}}{n_i}$$

Fully Adding Batch Normalization (BN):

- BN can balance ReLU states and normalize the variance of bounds.
- But BN was partly or fully missed in the models used by prior works.
- We fully add BN after every convolution or fully-connected layer in IBP training.

Warmup Regularization:

- Two regularizers for the warmup stage of IBP training to explicitly tighten certified bounds and balance ReLU activation states:
- Bound tightness regularizer.

$$\mathcal{L}_{\mathsf{tightness}} = rac{1}{ au m} \sum_{i=1}^m \mathsf{ReLU}(au - rac{\hat{\mathbb{E}}(\Delta_0)}{\hat{\mathbb{E}}(\Delta_i)}).$$

• ReLU activation state balancing regularizer.

$$\alpha_{i} = \frac{\sum_{j} \mathbb{I}(\underline{\mathbf{h}}_{i,j} > 0)\mathbf{c}_{i,j}}{-\sum_{j} \mathbb{I}(\overline{\mathbf{h}}_{i,j} < 0)\mathbf{c}_{i,j}}, \quad \beta_{i} = \frac{\sum_{j} \mathbb{I}(\underline{\mathbf{h}}_{i,j} > 0)(\mathbf{c}_{i,j} - \hat{\mathbb{E}}(\mathbf{c}_{i}))^{2}}{\sum_{j} \mathbb{I}(\overline{\mathbf{h}}_{i,j} < 0)(\mathbf{c}_{i,j} - \hat{\mathbb{E}}(\mathbf{c}_{i}))^{2}},$$

$$\mathcal{L}_{\mathsf{relu}} = \frac{1}{\tau m} \sum_{i=1}^{m} (\mathsf{ReLU}(\tau - \mathsf{min}(\alpha_i, \frac{1}{\alpha_i})) + \mathsf{ReLU}(\tau - \mathsf{min}(\beta_i, \frac{1}{\beta_i}))).$$

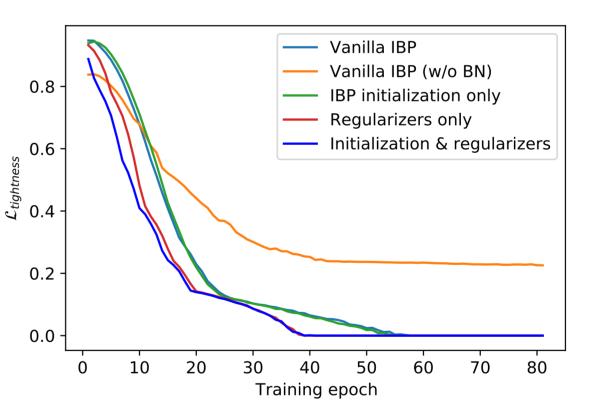
Experiments

Table 1. Main results on CIFAR-10 ($\epsilon_{\text{target}} = 8/255$). "†" indicates concurrent works.

Schedule (epochs)	Method	CNN-7		Wide-ResNet		ResNeXt	
		Standard	Verified	Standard	Verified	Standard	Verified
160 (1+80+79)	Vanilla IBP	53.80 ± 0.71	67.01 ± 0.29	54.31 ± 0.46	67.45 ± 0.21	55.23 ± 0.12	68.28 ± 0.15
	CROWN-IBP	58.76 ± 0.76	69.67 ± 0.38	60.39 ± 0.33	70.07 ± 0.42	61.08 ± 0.35	71.26 ± 0.11
	Ours	$\textbf{51.72}\pm\textbf{0.40}$	$\textbf{65.58}\pm\textbf{0.32}$	51.95 ± 0.27	$\textbf{65.91}\pm\textbf{0.14}$	$\boxed{\textbf{53.68}\pm\textbf{0.33}}$	$\textbf{66.91}\pm\textbf{0.40}$
	Ours (best)	51.06	65.03	51.63	65.72	53.38	66.41
Literature results			Warmup		Total (epochs)	Standard	Verified
Gowal et al., 2018			(5K+50K) steps		3,200	50.51	68.44
Zhang et al., 2019			$\left(320+1600 ight)$ epochs		3,200	54.02	66.94
Balunovic & Vechev, 2020			N/A		800	48.3	72.5
Xu et al., 2020			(100+800) epochs		2,000	53.71	66.62
†IBP+ParamRamp (Lyu et al., 2021)			$\left(320+1600 ight)$ epochs		3,200	55.28	67.09
[†] CROWN-IBP+ParamRamp (Lyu et al., 2021)			(320+1600) epochs		3,200	51.94	65.08
$^{\dagger}\ell_{\infty}$ -dist net (other architecture) (Zhang et al., 2021)			N/A		800	48.32	64.90

Table 2. Comparison of estimated time cost (seconds), for CNN-7 on CIFAR-10.

Method	Epochs	Total
IBP	3200	40496 × 4
CROWN-IBP (w/o loss fusion)	3200	91288×4
CROWN-IBP	2000	52362×4
† IBP $+$ ParamRamp	3200	$40496 \times 4 \times 1.09$
$^\daggerCROWN ext{-}IBP ext{+}ParamRamp$	3200	$91288\times4\times1.51$
Vanilla IBP (verified error 67.01 ± 0.29)	160	8747.9
CROWN-IBP (verified error 69.67 ± 0.38)	160	10641.3
Ours (verified error 65.58 ± 0.32)	160	9512.3



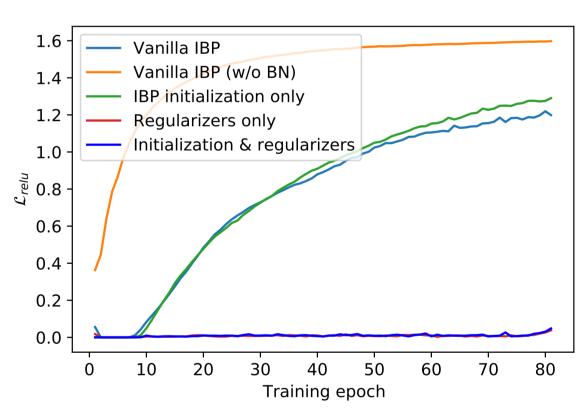


Figure 1. Curve of $\mathcal{L}_{tightness}$.

Figure 2. Curve of \mathcal{L}_{relu} .

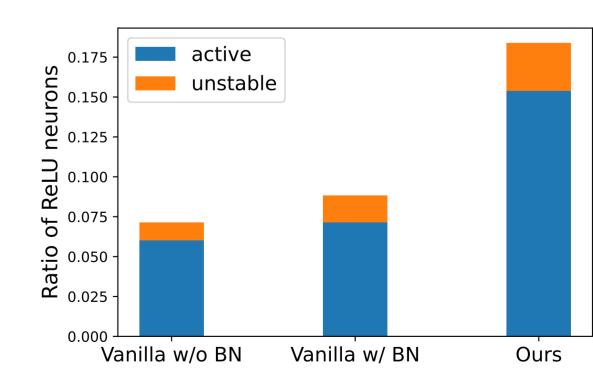


Figure 3. Ratios of active and unstable ReLU neurons a CNN on CIFAR-10.

 Fast certified robust training with short training time (17 times speed-up) while achieving the state-of-the-art verified errors with CNN.