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Effective Robustness in the Literature

We consider robustness to natural distribution shifts evaluated on bench-
mark test sets.

Effective robustness measures the extra out-of-distribution (OOD)
robustness beyond what can be predicted from the in-distribution
(ID) performance.
Controlling for ID accuracy distinguishes:
An effectively improved robustness v.s. An expected outcome of a
higher ID accuracy.
ImageNet models usually have similar effective robustness.
Zero-shot Contrastive Language-Image Pre-trained (CLIP)
models apparently achieved significant effective robustness gains.
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Figure 1. ImageNet models evaluated by Taori
et al., 2020.
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Figure 2. CLIP models v.s. ImageNet
models evaluated by Radford et al., 2021.

Do zero-shot CLIP models truly have
stronger effective robustness?

A subtle issue:
ImageNet was regarded as an “in-distribution” data for all the models.
CLIP models here were NOT trained on ImageNet.
A mismatch between CLIP’s training data and the ID data in the
evaluation.

Limitations of the previous evaluation:
It requires a single fixed ID test set.
It can become problematic when there are models trained on
different data.

Contradictory Results under Varying ID Test Sets
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Figure 3. Using ImageNet as the ID test set.
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Figure 4. Using YFCC as the ID test set.

The models appear to be more robust when there is a mismatch
between their training data and the ID test set.

Our Generalized Evaluation
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Figure 5. Accuracy on the plane.

We control for the accuracy evaluated on multiple ID test sets to
cover the training distributions of all the models.
Baseline function: a fitting plane β(x, y) from baseline models.
Multi-ID effective robustness:

ρ(f) = accood(f) − β(acc1(f), acc2(f)).
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Figure 6. ImageNet models v.s. YFCC models on ImageNet-R.

Figure 7. Interactive visualization.
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Figure 8. Fitting quality by R2.
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Figure 9. Effective robustness values.

Our multi-ID evaluation improves the fitting quality of the baseline
functions.
No model has a clear effective robustness gain under our new
evaluation.

Conclusion

Although CLIP models pre-trained on some datasets can improve the
accuracy on OOD test sets, this improvement is not an effective
robustness gain.
Our work provides a new effective robustness evaluation for models
trained on different data, and we also provide a new understanding on
the effective robustness gains of CLIP-like models observed in previous
works.
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