

A Deep Sequential Model for Discourse Parsing on Multi-Party Dialogues

Zhouxing Shi, Minlie Huang

Department of Computer Science & Technology, Tsinghua University, Beijing, China

Introduction

Task definition

• **Discourse parsing on a multi-party dialogue**: to identify dependency links and the corresponding relation types $\{(u_i, u_i, r_{ji}) \mid j \neq i\}$ from a given dialogue segmented into a sequence of Elementary Discourse Units(EDUs) u_1, u_2, \dots, u_n .

Motivation

- 3 Structured representation encoding: compute the structured representation of u_i with a structured representation encoder.
- Compute the structured representation of u_i : apply a structured encoder to the path from the root to u_i . In practice, it is computed incrementally.
- Speaker highlighing mechanism (SHM): compute $|\mathcal{A}|$ different structured representations for each EDU such that each one highlights a specific speaker.

$$g_{i,a}^{S} = \begin{cases} 0 & i = 0 \\ \mathbf{GRU}_{hl}(g_{i,a}^{S}, h_{i} \oplus r_{ji}) & a_{i} = a, i > 0 \end{cases}$$

- Parse the discourse structure of a *multi-party dialogue* which is different from written text.
- Construct a discourse structure incrementally by predicting dependency relations and building the structure *jointly and* alternately.
- Predict dependency relations with not only *local* information, but also *global* information that encodes the EDU sequence and the discourse structure that is already built at the current step.
- Build the discourse structure incrementally with a *structured* encoder, using the predicted links and relation types.

Figure 2: An example dependency tree (left) and the structured encoder (right).

Input for link prediction and relation classification:

$$H_{i,j} = h_i \oplus g_i^{NS} \oplus g_j^{NS} \oplus g_{j,a_i}^{S}$$

Experiments

Model

Link Link & Rel

Figure 1: A multi-party dialogue example with its discourse structure from the STAC Corpus.

Framework

- The overall process:
- ① Compute the non-structured representations of the EDUs with hierarchical Gated Recurrent Unit (GRU) encoders, denoted as h_i and g_i^{NS} .
- 2 Make a sequential scan of the EDUs, predicting dependency relations and constructing the discourse structure.
- Three steps when handling u_i :
- **1** Link prediction: predict the parent node p_i of EDU u_i with a link predictor.
- 2 Relation classification: predict the relation type between p_i (assume $p_i = u_i$) and u_i with a relation classifier.

Deep Sequential	73.2	55.7
Deep Sequential (shared)	72.1	54.7
Deep+Greedy	69.3	51.9
Deep+ILP	69.0	53.1
Deep+MST	69.6	52.1
ILP	68.6	52.1
MST	68.8	50.4
MOUEI		

Table 1: F_1 scores (%) for different models.

Model	Link	Link & Rel
Deep+Greedy	69.3	51.9
Deep Sequential (NS)	71.0	53.7
Deep Sequential (Random)	71.8	53.7
Deep Sequential (w/o SHM)	71.7	54.5
Deep Sequential	73.2	55.7

Table 2: *F*₁ scores (%) for different models.

Relation

Figure 3: Illustration of the model which consists of modules for link prediction, relation classification, and structured representation encoding.

AAAI 2019 Contact: zhouxingshichn@gmail.com, aihuang@tsinghua.edu.cn